Jan 12, 2009

What is Green Building?

Green Building means different things to different people. At its core is the intent to plan, design, construct, maintain, and deconstruct buildings, neighborhoods, and cities to be healthier and more comfortable places to live and work for the people on the inside, and more environmentally friendly for everyone else on the outside.

Green Building Construction



What Are the Economic Benefits of Green Buildings?

A green building may cost more up front, but saves through lower operating costs over the life of the building. The green building approach applies a project life cycle cost analysis for determining the appropriate up-front expenditure.  This analytical method calculates costs over the useful life of the asset.
These and other cost savings can only be fully realized when they are incorporated at the project's conceptual design phase with the assistance of an integrated team of professionals. The integrated systems approach ensures that the building is designed as one system rather than a collection of stand-alone systems.
Some benefits, such as improving occupant health, comfort, productivity, reducing pollution and  landfill waste are not easily quantified. Consequently, they are not adequately considered in cost analysis. For this reason, consider setting aside a small portion of the building budget to cover differential costs associated with less tangible green building benefits or to cover the cost of researching and analyzing green building options.

What Are the Elements of Green Buildings?

Below is a sampling of green building practices.
Siting
  • Start by selecting a site well suited to take advantage of mass transit. 
  • Protect and retain existing landscaping and natural features. Select plants that have low water and pesticide needs, and generate minimum plant trimmings. Use compost and mulches. This will save water and time.
  • Recycled content paving materials, furnishings, and mulches help close the recycling loop.
Energy Efficiency
Most buildings can reach energy efficiency levels far beyond California Title 24 standards, yet most only strive to meet the standard. It is reasonable to strive for 40 percent less energy than Title 24 standards. The following strategies contribute to this goal.
  • Passive design strategies can dramatically affect building energy performance. These measures include building shape and orientation, passive solar design, and the use of natural lighting. 
  • Develop strategies to provide natural lighting. Studies have shown that it has a positive impact on productivity and well being.
  • Install high-efficiency lighting systems with advanced lighting controls. Include motion sensors tied to dimmable lighting controls. Task lighting reduces general overhead light levels.
  • Use a properly sized and energy-efficient heat/cooling system in conjunction with a thermally efficient building shell. Maximize light colors for roofing and wall finish materials; install high R-value wall and ceiling insulation; and use minimal glass on east and west exposures.
  • Minimize the electric loads from lighting, equipment, and appliances.
  • Consider alternative energy sources such as photovoltaics and fuel cells that are now available in new products and applications. Renewable energy sources provide a great symbol of emerging technologies for the future.
  • Computer modeling is an extremely useful tool in optimizing design of electrical and mechanical systems and the building shell.
Materials Efficiency
  • Select sustainable construction materials and products by evaluating several characteristics such as reused and recycled content, zero or low off gassing of harmful air emissions, zero or low toxicity, sustainably harvested materials, high recyclability, durability, longevity, and local production.  Such products promote resource conservation and efficiency.  Using recycled-content products also helps develop markets for recycled materials that are being diverted from California's landfills, as mandated by the Integrated Waste Management Act.
  • Use dimensional planning and other material efficiency strategies.  These strategies reduce the amount of building materials needed and cut construction costs.   For example, design rooms on 4-foot multiples to conform to standard-sized wallboard and plywood sheets. 
  • Reuse and recycle construction and demolition materials.  For example, using inert demolition materials as a base course for a parking lot keeps materials out of landfills and costs less. 
  • Require plans for managing materials through deconstruction, demolition, and construction. 
  • Design with adequate space to facilitate recycling collection and to incorporate a solid waste management program that prevents waste generation.
Water Efficiency
  • Design for dual plumbing to use recycled water for toilet flushing or a gray water system that recovers rainwater or other nonpotable water for site irrigation.
  • Minimize wastewater by using ultra low-flush toilets, low-flow shower heads, and other water conserving fixtures.
  • Use recirculating systems for centralized hot water distribution.
  • Install point-of-use hot water heating systems for more distant locations.
  • Use a water budget approach that schedules irrigation using the California Irrigation Management Information System data for landscaping.
  • Meter the landscape separately from buildings. Use micro-irrigation (which excludes sprinklers and high-pressure sprayers) to supply water in nonturf areas.
  • Use state-of-the-art irrigation controllers and self-closing nozzles on hoses.

1 comments:

aliah said...

Home construction materials and building techniques have changed in the past several decades to become more energy efficient. Waste material from industrial processes can be recovered and used in number of ways..
mini cement plant